Partial Schauder estimates for second-order elliptic and parabolic equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schauder Estimates for Elliptic and Parabolic Equations

The Schauder estimate for the Laplace equation was traditionally built upon the Newton potential theory. Different proofs were found later by Campanato [Ca], in which he introduced the Campanato space; Peetre [P], who used the convolution of functions; Trudinger [T], who used the mollification of functions; and Simon [Si], who used a blowup argument. Also a perturbation argument was found by Sa...

متن کامل

Global Estimates for Mixed Methods for Second Order Elliptic Equations

Global error estimates in L2(Q), L°°(Q), and H~S(Q), Q in R2 or R3, are derived for a mixed finite element method for the Dirichlet problem for the elliptic operator Lp = -div(a grad p + bp) + cp based on the Raviart-Thomas-Nedelec space V^ X Wh c H(div; Í2) X L2(ü). Optimal order estimates are obtained for the approximation of p and the associated velocity field u = -(a grad p + bp) in L2(fl) ...

متن کامل

On Second Order Elliptic and Parabolic Equations of Mixed Type

It is known that solutions to second order uniformly elliptic and parabolic equations, either in divergence or nondivergence (general) form, are Hölder continuous and satisfy the interior Harnack inequality. We show that even in the one-dimensional case (x ∈ R1), these properties are not preserved for equations of mixed divergence-nondivergence structure: for elliptic equations Di(a 1 ijDju) + ...

متن کامل

Boundary Estimates for Positive Solutions to Second Order Elliptic Equations

Consider positive solutions to second order elliptic equations with measurable coefficients in a bounded domain, which vanish on a portion of the boundary. We give simple necessary and sufficient geometric conditions on the domain, which guarantee the Hopf-Oleinik type estimates and the boundary Lipschitz estimates for solutions. These conditions are sharp even for harmonic functions.

متن کامل

Quantitative uniqueness estimates for the general second order elliptic equations

In this paper we study quantitative uniqueness estimates of solutions to general second order elliptic equations with magnetic and electric potentials. We derive lower bounds of decay rate at infinity for any nontrivial solution under some general assumptions. The lower bounds depend on asymptotic behaviors of magnetic and electric potentials. The proof is carried out by the Carleman method and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2010

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-010-0348-9